1. Let R be the raltion $R=\{(a, b) \mid a<b\}$ on the set of integers \mathbb{Z}. Find
(a) R^{-1}
(b) R^{c}.
2. How many relations are there on a set with n elements that are
(a) symmetric
(b) antisymmetric
(c) reflexive.
3. Show that the relation R on a set A is symmetric if and only if $R=R^{-1}$.
4. Let A be the set of non-zero integers and let R be the relation on $A \times A$ defined as follows: $(a, b) R(c, d)$ whenever $a d=b c$. Prove that R is an equivalence relation.
5. Consider the set of integers \mathbb{Z}. Define $a R b$ if $b=a^{r}$ for some positive integer r. Show that R is a partial on \mathbb{Z}.
6. Give an example of relations R on $A=\{1,2,3\}$ having the following property.
(a) R is both symmetric and antisymmetric (b) R is neither symetric not antisymmetric.
(c) R is transitive but $R \cup R^{-1}$ is not transitive.
(c) R is transitive but $R \cup R^{-1}$ is not transitive.
7. Let R be the following equivalence relation on the set $A=\{1,2, \ldots, 6\}$:
$R=\{(1,1),(1,5),(2,2),(2,3),(2,6),(3,2),(3,3),(3,6),(4,4),(5,1),(5,5),(6,2),(6,3),(6,6)\}$. Find the equivalence classes of R, i.e., find the partition of A induced by R.
8. Let $f: A \rightarrow B$ be a function and $E, F \subseteq A$ and $G, H \subseteq B$. Then show that
(a) $f(E \cup F)=f(E) \cup f(F)$
(b) $f(E \cap F) \subseteq f(E) \cap f(F)$
(c) $f^{-1}(G \cup H)=f^{-1}(G) \cup f^{-1}(H)$
(d) $f^{-1}(G \cap H)=f^{-1}(G) \cap f^{-1}(H)$.
9. (a) Show that if $f: A \rightarrow B$ is injective and $E \subseteq A$, then $f^{-1}(f(E))=E$. Give an example that equality need not hold if f is not injective.
(b) Show that if $f: A \rightarrow B$ is surjective and $H \subseteq B$, then $f\left(f^{-1}(H)\right)=H$. Give an example that equality need not hold if f is not surjective.
10. Let A and B be sets with $|A|=l$ and $|B|=m$.
(a) Find the number of injective functions from A to B.
(b) Find the number of surjective functions from A to B.
(c) Find the number of bijective functions from A to B.
11. Show that $(0, \infty) \approx(-\infty, \infty) \approx\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
12. $(0,1) \times(0,1) \approx(0,1)$.
13. $\mathbb{R} \approx \mathbb{R} \times \mathbb{R}$.
14. $[0,1] \approx \mathcal{P}(\mathbb{N})$ (Power set of $\mathbb{N})$.
15. Show that $\mathcal{P}=\left\{p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}: a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}\right\} \approx \mathbb{N}$.
16. A real number r is called algebraic is r is a solution of $p(x)=0$, where $p(x) \in \mathcal{P}$ (in above). Show that the set A of all algebraic number is equivalent to \mathbb{N}.
