- Let R be the raltion R = {(a, b) | a < b} on the set of integers Z. Find

 (a) R⁻¹
 (b) R^c.
- 2. How many relations are there on a set with n elements that are(a) symmetric(b) antisymmetric(c) reflexive.
- 3. Show that the relation R on a set A is symmetric if and only if $R = R^{-1}$.
- 4. Let A be the set of non-zero integers and let R be the relation on $A \times A$ defined as follows: (a, b) R(c, d) whenever ad = bc. Prove that R is an equivalence relation.
- 5. Consider the set of integers \mathbb{Z} . Define aRb if $b = a^r$ for some positive integer r. Show that R is a partial on \mathbb{Z} .
- 6. Give an example of relations R on A = {1,2,3} having the following property.
 (a) R is both symmetric and antisymmetric
 (b) R is neither symetric not antisymmetric.
 (c) R is transitive but R ∪ R⁻¹ is not transitive.
- 7. Let R be the following equivalence relation on the set $A = \{1, 2, \dots, 6\}$:

 $R = \{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)\}.$ Find the equivalence classes of R, i.e., find the partition of A induced by R.

- 8. Let $f: A \to B$ be a function and $E, F \subseteq A$ and $G, H \subseteq B$. Then show that (a) $f(E \cup F) = f(E) \cup f(F)$ (b) $f(E \cap F) \subseteq f(E) \cap f(F)$ (c) $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$ (d) $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H).$
- 9. (a) Show that if $f : A \to B$ is injective and $E \subseteq A$, then $f^{-1}(f(E)) = E$. Give an example that equality need not hold if f is not injective.
 - (b) Show that if $f : A \to B$ is surjective and $H \subseteq B$, then $f(f^{-1}(H)) = H$. Give an example that equality need not hold if f is not surjective.
- 10. Let A and B be sets with |A| = l and |B| = m.
 - (a) Find the number of injective functions from A to B.
 - (b) Find the number of surjective functions from A to B.
 - (c) Find the number of bijective functions from A to B.
- 11. Show that $(0,\infty) \approx (-\infty,\infty) \approx (-\frac{\pi}{2},\frac{\pi}{2})$.
- 12. $(0,1) \times (0,1) \approx (0,1)$.
- 13. $\mathbb{R} \approx \mathbb{R} \times \mathbb{R}$.
- 14. $[0,1] \approx \mathcal{P}(\mathbb{N})$ (Power set of \mathbb{N}).
- 15. Show that $\mathcal{P} = \{p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n : a_0, a_1, \ldots, a_n \in \mathbb{Z}\} \approx \mathbb{N}.$
- 16. A real number r is called algebraic is r is a solution of p(x) = 0, where $p(x) \in \mathcal{P}$ (in above). Show that the set A of all algebraic number is equivalent to \mathbb{N} .